
The Machine –
Memory Driven
Computing
Sharad Singhal

1st Workshop on Resource Disaggregation, April
13, 2019

Outline

– Motivation for Memory-Driven Computing

– Initial experiences with Memory-Driven Computing

– The Machine

– How Memory-Driven Computing benefits applications

– Commercialization of Memory-Driven Computing

– Challenges for programming Memory-Driven Computing

– Summary

©Copyright 2019 Hewlett Packard Enterprise Company

Engage Act

What’s driving the data explosion?

©Copyright 2019 Hewlett Packard Enterprise Company

Electronic record of event Interactive apps for humans Machines making decisions

Ex: banking Ex: social media Ex: smart and self-driving cars

Mediated by people Interactive Real time, low latency

Structured data Unstructured data Structured and unstructured data

More data sources and more data

©Copyright 2019 Hewlett Packard Enterprise Company

Record

40 petabytes

200B rows of recent

transactions for Walmart’s

analytic database (2017)

Engage

4 petabytes a day

Posted daily by Facebook’s

2 billion users (2017)

2MB per active user

Act

40,000 petabytes a day*

4TB daily per self-driving car

10M connected cars by 2020

Front camera

20MB / sec
Front ultrasonic sensors

10kB / sec
Infrared camera

20MB / sec

Side ultrasonic

sensors

100kB / sec

Front, rear and

top-view cameras

40MB / sec

Rear ultrasonic

cameras

100kB / secRear radar sensors

100kB / sec

Crash sensors

100kB / sec

Front radar

sensors

100kB / sec

* Driver assistance systems only

The New Normal: Compute is not keeping up

0.3
0.8 1.2

1.8
4.4

7.9

15.8

31.6

44

0

5

10

15

20

25

30

35

40

45

50

2006 2008 2010 2012 2014 2016 2018 2020

Data
(Zettabytes)Data nearly doubles

every two years
(2013-2020)

Data growth

Transistors
(thousands)

Single-thread

Performance
(SpecINT)

Frequency
(MHz)

Typical Power
(Watts)

Number of Cores

107

106

105

104

103

102

101

100

Microprocessors

Source: K. Rupp. 42 Years of Microprocessor Trend Data Source: Data Age 2025 study, sponsored by Seagate, April 2017

©Copyright 2019 Hewlett Packard Enterprise Company

East-West traffic is exploding, driving a
need for much higher bandwidth…

… and enterprises are seeking rack-
scale architectural composability

… and in HPC systems, bandwidth is
not keeping up with compute

The New Normal: Interconnects are not keeping up

©Copyright 2019 Hewlett Packard Enterprise Company

Facebook Network Traffic1

Increasingly complex, AI driven workloads drive
significant machine-to-machine traffic to deliver richer
customer experiences and user value

CPU Cores NVMFabric

ProLiant.Next
ToR & Gateway

ProLiant.Next
ProLiant.Next
ProLiant.Next
ProLiant.Next
ProLiant.Next
ProLiant.Next
ProLiant.Next
ProLiant.Next
ProLiant.Next
ProLiant.Next
ProLiant.Next
ProLiant.Next
ProLiant.Next
ProLiant.Next

ProLiant.Next
ProLiant.Next
ProLiant.Next

Pooled

NVM
Storage

(Archive)

M
e

m
o

ry
 F

a
b

ri
c

1
0
X

b
a

n
d

w
id

th
 p

e
r

ra
c
k

w
it
h

 n
o

 o
v
e

r
p

ro
v
is

io
n

in
g

A
u
ro

ra
 (

2
0
1
8
)

S
u
m

m
it
 (

2
0
1
8
)

T
ri
n

it
y
 K

N
L
 (

2
0
1
6
)

C
o
ri
 H

s
w

 (
2
0
1
6
)

T
it
a
n
 (

2
0
1
3
)

E
d
is

o
n
 (

2
0
1
3
)

S
e
q
u
o
ia

 (
2
0
1
2
)

H
o
p
p
e
r

(2
0
1
0
)

Bandwidth / Flops (Exascale Systems)2

Injection BW/ FlopsMemory BW / Flops Bisection BW / Flops

Requires significant bandwidth across the rack to
dynamically compose resources

We are radically rethinking our approach to computing
Advancing computing without relying on Moore’s Law

Unconventional

accelerators

Unconventional

architectures

Unconventional

programming

©Copyright 2019 Hewlett Packard Enterprise Company

GPU

A
S

IC

Quantum

R
IS

C
V Memory

Memory

M
e

m
o

ry

Memory

M
e

m
o

ry

SoC

S
o
C

SoC

S
o
C

Future architecture

Memory-Driven Computing

Today’s architecture

From processor-centric computing

– Convergence of memory and storage

– Byte-addressable non-volatile memory accessible via memory operations

– Local volatile memory provides lower latency, high performance tier

– High capacity disaggregated memory pool

– Fabric-attached memory pool is accessible by all compute resources

– Low diameter networks provide near-uniform low latency

– Distributed heterogeneous compute resources

– Enables mix of processors to work together

– Software

– Memory-speed persistence

– Direct, unmediated access to all fabric-attached memory across the
memory fabric

– Non-coherent concurrent accesses and data sharing by compute nodes

Local DRAM

Local DRAM

Local DRAM

Local DRAM

SoC

SoC

SoC

SoC

NVM

NVM

NVM

NVM

Fabric-
Attached

Memory Pool

C
o

m
m

u
n

ic
a

ti
o

n
s

 a
n

d
 m

e
m

o
ry

 f
a

b
ri

c

N
e
tw

o
rk

The Machine prototype (May 2017)

160 TB of fabric-attached, shared memory

40 compute nodes

ARM-based Cavium ThunderX2 SoC

256 GB node-local memory

Optimized Linux-based operating system

High-performance fabric

Photonics/optical communication links with

electrical-to-optical transceiver modules

Protocols are early version of Gen-Z

Software stack designed to take advantage of

abundant fabric-attached memory

©Copyright 2019 Hewlett Packard Enterprise Company

https://www.nextplatform.com/2017/01/09/hpe-powers-machine-

architecture/

Hardware design: Memory fabric testbed

Hardware design: Memory fabric testbed

The Machine Program: Memory fabric testbed

©Copyright 2019 Hewlett Packard Enterprise Company

Transform performance with Memory-Driven programming

In-memory analytics

15x
faster

New algorithms Completely rethink
Modify existing

frameworks

Similarity search

40x
faster

Financial models

10,000x
faster

Large-scale

graph inference

100x
faster

©Copyright 2019 Hewlett Packard Enterprise Company

–

–

–

–

–

–

–
Dataset 2: synthetic
1.7 billion nodes

11.4 billion edges

Spark for The Machine: 300 sec

Spark: does not complete

Dataset 1: web graph
101 million nodes

1.7 billion edges

Spark for

The Machine
Spark

201 sec

13 sec

15X
faster

https://github.com/HewlettPackard/sparkle

https://github:com/HewlettPackard/sandpiper

https://github.com/HewlettPackard/sparkle
https://github:com/HewlettPackard/sandpiper

Step 1: Create a parametric model y = f(x1,…,xk)

Step 2: Generate a set of random inputs

Step 3: Evaluate the model and store the results

Step 4: Repeat steps 2 and 3 many times

Step 5: Analyze the results

Traditional Memory-Driven

Replace steps 2 and 3 with look-ups, transformations

• Pre-compute representative simulations and store

in memory

• Use transformations of stored simulations instead

of computing new simulations from scratch

Model Results
Generate/

Evaluate/

Store

Many times

Model ResultsLook-ups/

Transform

Option pricing

Double-no-Touch Option

with 200 correlated

underlying assets

Time horizon (10 days)

Value-at-Risk

Portfolio of 10000 products

with 500 correlated

underlying assets

Time horizon (14 days)

1

10

100

1000

10000

100000

1000000

10000000

Option Pricing Value-at-Risk

Traditional MC Memory-Driven MC

~10200X

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

‒

–

–

–

–

–

–

–

–

Open Standard

http://www.genzconsortium.org/

Consortium with broad industry support

©Copyright 2019 Hewlett Packard Enterprise Company

Consortium Members (65)

System OEM CPU/Accel Mem/Storage Silicon IP Connect Software

Cisco AMD Everspin Broadcom Avery Aces Redhat

Cray Arm Micron IDT Cadence AMP VMware

Dell EMC IBM Samsung Marvell Intelliprop FIT

H3C Qualcomm Seagate Mellanox Mentor Genesis Govt/Univ

Hitachi Xilinx SK Hynix Microsemi Mobiveil Jess Link ETRI

HP Smart Modular Sony Semi PLDA Lotes Oak Ridge

HPE Spintransfer Synopsys Luxshare Simula

Huawei Toshiba Molex UNH

Lenovo WD Samtec Yonsei U

NetApp Senko ITT Madras

Nokia Tech Svc Provider Eco/Test TE

Yadro Google Allion Labs 3M

Microsoft Keysight

Node Haven Teledyne LeCroy

Enabling Right-Sized Solutions

• Logical systems composed of physical components
 Or subparts or subregions of components (e.g. memory/storage)

• Logical systems match exact workload requirements
 No stranded resources overprovisioned to workloads

• Facilitates data-centric computing via shared memory
 Eliminates data movement: Do more with less, reduces cost

©Copyright 2019 Hewlett Packard Enterprise Company

HPE Superdome Flex
Modular design for maximum flexibility and performance

–

–

–

–

Top view Bottom view

©Copyright 2019 Hewlett Packard Enterprise Company

For even larger workloads

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Superdome

Flex

Superdome

Flex

11

16

6 Superdome

Flex

1

21

23

28

33

38

Superdome

Flex

12S

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Superdome

Flex

Superdome

Flex

Superdome

Flex

11

16

6 Superdome

Flex

1

21

Superdome

Flex

23

28

33

38

16S

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Superdome

Flex

Superdome

Flex

Superdome

Flex

11

16

6 Superdome

Flex

1

21

Superdome

Flex

Superdome

Flex23

28

33

38

20S

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Superdome

Flex

Superdome

Flex

Superdome

Flex

11

16

6 Superdome

Flex

1

21

Superdome

Flex

Superdome

Flex

Superdome

Flex

Superdome

Flex

Superdome

Flex

23

28

33

38

32S24S

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Superdome

Flex

Superdome

Flex

Superdome

Flex

11

6 Superdome

Flex

1

21

Superdome

Flex

Superdome

Flex

Superdome

Flex

23

28

33

38

28S

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Superdome

Flex

Superdome

Flex

Superdome

Flex

11

16

6 Superdome

Flex

1

21

Superdome

Flex

Superdome

Flex

Superdome

Flex

Superdome

Flex

23

28

33

38

12S
• up to 336 cores / 672 threads
• up to 18TB
• up to 48 PCIe 3.0 card slots

16S
• up to 448 cores / 896 threads
• up to 24TB
• up to 64 PCIe 3.0 card slots

20S
• up to 560 cores / 1120 threads
• up to 30TB
• up to 80 PCIe 3.0 card slots

24S
• up to 672 cores / 1344 threads
• up to 36TB
• up to 96 PCIe 3.0 card slots

28S
• up to 784 cores / 1568 threads
• up to 42TB
• up to 112 PCIe 3.0 card slots

32S
• up to 896 cores / 1792 threads
• up to 48TB
• up to 128 PCIe 3.0 card slots

©Copyright 2019 Hewlett Packard Enterprise Company

Composing Superdome Flex Systems with Software Defined
Scalable Memory

Forward looking direction – no production commitment

–

–

–

©Copyright 2019 Hewlett Packard Enterprise Company

OpenFAM: programming model for fabric-attached memory

– FAM memory management

– Regions (coarse-grained) and data items within a region

– Data path operations

– Blocking and non-blocking get / put, scatter / gather: transfer
memory between node local memory and FAM

– Direct access: enables load / store directly to FAM

– Atomics

– Fetching and non-fetching all-or-nothing operations on
locations in memory

– Arithmetic and logical operations for various data types

– Memory ordering

– Fence (non-blocking) and quiet (blocking) operations to
impose ordering on FAM requests

©Copyright 2019 Hewlett Packard Enterprise Company

K. Keeton, S. Singhal, M. Raymond, “The OpenFAM “The OpenFAM API: a programming model for
disaggregated persistent memory,” Proc. OpenSHMEM 2018.

Draft of OpenFAM API spec available for review: https://github.com/OpenFAM/API
Email us at openfam@groups.ext.hpe.com

https://github.com/OpenFAM/API

MDC Programming Opportunities

Data sharing in one large globally-addressable memory
− Pass by reference, rather than copy

− Multi-process – share large pool of data in shared memory

− Use global shared memory for messaging

Focus on in-memory data formats

– Filesystem vs database vs direct use of byte-addressable persistent memory

– Opportunity to move away from having multiple data formats in memory and storage;
single data format used as both in-memory representation and data storage

– Reduce number of software layers – simpler to develop and maintain software

©Copyright 2019 Hewlett Packard Enterprise Company

MDC Programming Challenges

Practicalities of using new technologies
− Accessing memory: persistent memory and fabric-attached memory

− Allocating and managing memory

Data consistency in face of failures
− Vulnerability of data in persistent memory – failures that result in corruption or loss

− Memory can be persistent but not consistent – can’t turn it off and on again

− Need ability to update data in persistent memory from one consistent state to another,

even in presence of failures

©Copyright 2019 Hewlett Packard Enterprise Company

Designing for disaggregation

– Challenge: how to design data structures and algorithms for disaggregated architectures?

– Shared disaggregated memory provides ample capacity, but is less performant than node-local memory

– Concurrent accesses from multiple nodes may mean data cached in node’s local memory is stale

– Potential solution: “distance-avoiding” data structures

– Data structures that exploit local memory caching and minimize “far” accesses

– Borrow ideas from communication-avoiding and write-avoiding data structures and algorithms

– Potential solution: hardware support

– Ex: indirect addressing to avoid “far” accesses, notification primitives to support sharing

– What additional hardware primitives would be helpful?

©Copyright 2019 Hewlett Packard Enterprise Company

https://doi.org/10.1145/3317550.3321433

Wrapping up

– New technologies pave the way to Memory-Driven
Computing

– Fast direct access to large shared pool of fabric-attached
(non-volatile) memory

– Memory-Driven Computing

– Mix-and-match composability with independent resource
evolution and scaling

– Combination of technologies enables us to rethink
the programming model

– Simplify software stack

– Operate directly on memory-format persistent data

– Exploit disaggregation to improve load balancing, fault
tolerance, and coordination

– Many opportunities for software innovation

– How would you use Memory-Driven Computing?

©Copyright 2019 Hewlett Packard Enterprise Company

Questions

©Copyright 2019 Hewlett Packard Enterprise Company

