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Engage Act

What’s driving the data explosion?
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Electronic record of event Interactive apps for humans Machines making decisions

Ex: banking Ex: social media Ex: smart and self-driving cars

Mediated by people Interactive Real time, low latency

Structured data Unstructured data Structured and unstructured data



More data sources and more data 
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Record

40 petabytes

200B rows of recent 

transactions for Walmart’s 

analytic database (2017)

Engage

4 petabytes a day

Posted daily by Facebook’s       

2 billion users (2017)

2MB per active user

Act

40,000 petabytes a day*

4TB daily per self-driving car

10M connected cars by 2020

Front camera

20MB / sec
Front ultrasonic sensors

10kB / sec
Infrared camera

20MB / sec

Side ultrasonic 

sensors

100kB / sec

Front, rear and 

top-view cameras

40MB / sec

Rear ultrasonic 

cameras

100kB / secRear radar sensors

100kB / sec

Crash sensors

100kB / sec

Front radar 

sensors

100kB / sec

* Driver assistance systems only



The New Normal: Compute is not keeping up
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East-West traffic is exploding, driving a 
need for much higher bandwidth…

… and enterprises are seeking rack-
scale architectural composability

… and in HPC systems, bandwidth is 
not keeping up with compute

The New Normal: Interconnects are not keeping up
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Facebook Network Traffic1

Increasingly complex, AI driven workloads drive 
significant machine-to-machine traffic to deliver richer 
customer experiences and user value
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Bandwidth / Flops (Exascale Systems)2

Injection BW/ FlopsMemory BW / Flops Bisection BW / Flops

Requires significant bandwidth across the rack to 
dynamically compose resources



We are radically rethinking our approach to computing
Advancing computing without relying on Moore’s Law

Unconventional 

accelerators

Unconventional 

architectures

Unconventional 

programming
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Memory-Driven Computing

Today’s architecture 

From processor-centric computing



– Convergence of memory and storage

– Byte-addressable non-volatile memory accessible via memory operations

– Local volatile memory provides lower latency, high performance tier

– High capacity disaggregated memory pool

– Fabric-attached memory pool is accessible by all compute resources

– Low diameter networks provide near-uniform low latency

– Distributed heterogeneous compute resources

– Enables mix of processors to work together

– Software

– Memory-speed persistence

– Direct, unmediated access to all fabric-attached memory across the 
memory fabric

– Non-coherent concurrent accesses and data sharing by compute nodes

Local DRAM

Local DRAM

Local DRAM

Local DRAM

SoC

SoC

SoC

SoC
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The Machine prototype (May 2017)

160 TB of fabric-attached, shared memory 

40 compute nodes

ARM-based Cavium ThunderX2 SoC

256 GB node-local memory

Optimized Linux-based operating system

High-performance fabric

Photonics/optical communication links with 

electrical-to-optical transceiver modules

Protocols are early version of Gen-Z

Software stack designed to take advantage of 

abundant fabric-attached memory
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https://www.nextplatform.com/2017/01/09/hpe-powers-machine-

architecture/



Hardware design: Memory fabric testbed



Hardware design: Memory fabric testbed



The Machine Program: Memory fabric testbed
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Transform performance with Memory-Driven programming

In-memory analytics

15x
faster

New algorithms Completely rethink
Modify existing 

frameworks

Similarity search

40x
faster

Financial models

10,000x
faster

Large-scale

graph inference

100x
faster
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–

–

–

–

–

–

–
Dataset 2: synthetic
1.7 billion nodes

11.4 billion edges

Spark for The Machine: 300 sec

Spark: does not complete

Dataset 1: web graph
101 million nodes

1.7 billion edges

Spark for 

The Machine
Spark

201 sec

13 sec

15X
faster

https://github.com/HewlettPackard/sparkle

https://github:com/HewlettPackard/sandpiper

https://github.com/HewlettPackard/sparkle
https://github:com/HewlettPackard/sandpiper


Step 1: Create a parametric model y = f(x1,…,xk)

Step 2: Generate a set of random inputs

Step 3: Evaluate the model and store the results

Step 4: Repeat steps 2 and 3 many times

Step 5: Analyze the results

Traditional Memory-Driven

Replace steps 2 and 3 with look-ups, transformations 

• Pre-compute representative simulations and store 

in memory

• Use transformations of stored simulations instead 

of computing new simulations from scratch

Model Results
Generate/

Evaluate/

Store

Many times

Model ResultsLook-ups/ 

Transform



Option pricing

Double-no-Touch Option 

with 200 correlated 

underlying assets 

Time horizon (10 days)

Value-at-Risk

Portfolio of 10000 products 

with 500 correlated 

underlying assets

Time horizon (14 days)
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Option Pricing Value-at-Risk

Traditional MC Memory-Driven MC

~10200X
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Open Standard

http://www.genzconsortium.org/


Consortium with broad industry support
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Consortium Members (65)

System OEM CPU/Accel Mem/Storage Silicon IP Connect Software

Cisco AMD Everspin Broadcom Avery Aces Redhat

Cray Arm Micron IDT Cadence AMP VMware

Dell EMC IBM Samsung Marvell Intelliprop FIT

H3C Qualcomm Seagate Mellanox Mentor Genesis Govt/Univ

Hitachi Xilinx SK Hynix Microsemi Mobiveil Jess Link ETRI

HP Smart Modular Sony Semi PLDA Lotes Oak Ridge

HPE Spintransfer Synopsys Luxshare Simula

Huawei Toshiba Molex UNH

Lenovo WD Samtec Yonsei U

NetApp Senko ITT Madras

Nokia Tech Svc Provider Eco/Test TE

Yadro Google Allion Labs 3M

Microsoft Keysight

Node Haven Teledyne LeCroy



Enabling Right-Sized Solutions

• Logical systems composed of physical components
 Or subparts or subregions of components (e.g. memory/storage)

• Logical systems match exact workload requirements 
 No stranded resources overprovisioned to workloads 

• Facilitates data-centric computing via shared memory 
 Eliminates data movement: Do more with less, reduces cost  

©Copyright 2019 Hewlett Packard Enterprise Company



HPE Superdome Flex
Modular design for maximum flexibility and performance

–

–

–

–

Top view Bottom view
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For even larger workloads
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12S
• up to 336 cores / 672 threads
• up to 18TB 
• up to 48 PCIe 3.0 card slots

16S
• up to 448 cores / 896 threads
• up to 24TB
• up to 64 PCIe 3.0 card slots

20S
• up to 560 cores / 1120 threads
• up to 30TB 
• up to 80 PCIe 3.0 card slots

24S
• up to 672 cores / 1344 threads
• up to 36TB 
• up to 96 PCIe 3.0 card slots

28S
• up to 784 cores / 1568 threads
• up to 42TB 
• up to 112 PCIe 3.0 card slots

32S
• up to 896 cores / 1792 threads
• up to 48TB
• up to 128 PCIe 3.0 card slots
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Composing Superdome Flex Systems with Software Defined 
Scalable Memory

Forward looking direction – no production commitment

–

–

–
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OpenFAM: programming model for fabric-attached memory

– FAM memory management

– Regions (coarse-grained) and data items within a region

– Data path operations

– Blocking and non-blocking get / put, scatter / gather: transfer 
memory between node local memory and FAM

– Direct access: enables load / store directly to FAM

– Atomics

– Fetching and non-fetching all-or-nothing operations on 
locations in memory

– Arithmetic and logical operations for various data types

– Memory ordering

– Fence (non-blocking) and quiet (blocking) operations to 
impose ordering on FAM requests

©Copyright 2019 Hewlett Packard Enterprise Company

K. Keeton, S. Singhal, M. Raymond, “The OpenFAM “The OpenFAM API: a programming model for 
disaggregated persistent memory,” Proc. OpenSHMEM 2018.

Draft of OpenFAM API spec available for review: https://github.com/OpenFAM/API
Email us at openfam@groups.ext.hpe.com

https://github.com/OpenFAM/API


MDC Programming Opportunities

Data sharing in one large globally-addressable memory
− Pass by reference, rather than copy

− Multi-process – share large pool of data in shared memory

− Use global shared memory for messaging

Focus on in-memory data formats

– Filesystem vs database vs direct use of byte-addressable persistent memory

– Opportunity to move away from having multiple data formats in memory and storage; 
single data format used as both in-memory representation and data storage

– Reduce number of software layers – simpler to develop and maintain software
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MDC Programming Challenges

Practicalities of using new technologies
− Accessing memory: persistent memory and fabric-attached memory

− Allocating and managing memory

Data consistency in face of failures 
− Vulnerability of data in persistent memory – failures that result in corruption or loss

− Memory can be persistent but not consistent – can’t turn it off and on again

− Need ability to update data in persistent memory from one consistent state to another, 

even in presence of failures
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Designing for disaggregation

– Challenge: how to design data structures and algorithms for disaggregated architectures?

– Shared disaggregated memory provides ample capacity, but is less performant than node-local memory

– Concurrent accesses from multiple nodes may mean data cached in node’s local memory is stale

– Potential solution: “distance-avoiding” data structures

– Data structures that exploit local memory caching and minimize “far” accesses

– Borrow ideas from communication-avoiding and write-avoiding data structures and algorithms

– Potential solution: hardware support

– Ex: indirect addressing to avoid “far” accesses, notification primitives to support sharing

– What additional hardware primitives would be helpful?

©Copyright 2019 Hewlett Packard Enterprise Company

https://doi.org/10.1145/3317550.3321433


Wrapping up

– New technologies pave the way to Memory-Driven 
Computing

– Fast direct access to large shared pool of fabric-attached 
(non-volatile) memory

– Memory-Driven Computing

– Mix-and-match composability with independent resource 
evolution and scaling

– Combination of technologies enables us to rethink 
the programming model

– Simplify software stack

– Operate directly on memory-format persistent data

– Exploit disaggregation to improve load balancing, fault 
tolerance, and coordination

– Many opportunities for software innovation

– How would you use Memory-Driven Computing?
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Questions
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