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Abstract
This paper proposes a new service-level agreement
(SLA) support for disaggregated memory, which con-
sists of fast direct DRAM and slow indirect memory in
remote machines or local non-volatile memory. Based
on a new performance prediction model, the SLA sup-
port provides the bounded performance as compared
to the ideal configuration only with the direct memory.
For the SLA fulfillment, we propose an efficient per-
formance predictor using indirect memory traces, and a
memory management system to adjust the local memory
capacity as necessary. We implement the proposed SLA
support in a disaggregated memory system integrated to
Linux KVM, and show its feasibility with real machine
experiments. By providing the performance bound, the
proposed SLA support facilitates the adoption of disag-
gregated memory in cloud computing, where the perfor-
mance consistency is critical.

Keywords Disaggregated Memory, Service-Level Agree-
ment, Cloud Computing, Memory Management

1. Introduction
Disaggregated memory provides the memory capac-
ity expansion from the direct local DRAM to indirect
memory either in remote machines or local non-volatile
memory attached via PCIe. It has emerged to accom-
modate the capacity demands arising from the memory-
intensive workloads, such as in-memory databases, in-
memory data caching, bioinformatics, and graph pro-
cessing. In addition, disaggregated memory can provide
a cost-effective way to scale memory capacity while
improving resource provisioning flexibility and power
efficiency for cloud providers [12, 14–16]. Numerous
prior studies have investigated the memory extension
across node boundaries. Some of them investigated re-
mote paging techniques on OS or hypervisor, and oth-
ers proposed the hardware architectures of the memory
blade [1, 2, 4, 5, 7, 8, 11, 13–18].

However, disaggregated memory can pose a new
challenge to cloud providers. Depending on the capac-
ity allocation of fast direct and slow indirect memory,
the application performance can significantly vary. Such

performance inconsistency can potentially hamper the
adoption of disaggregated memory in cloud systems.

To facilitate the utilization of disaggregated memory
systems on clouds, this study proposes a new SLA sup-
port for disaggregated memory system guaranteeing the
end performance based on a performance model (§2). To
the best of our knowledge, this is the first study to sup-
port quality-of-service (QoS) for disaggregated mem-
ory systems on clouds. To support the SLA, this study
proposes an efficient performance predictor by profil-
ing accesses to the tail part of direct local memory and
accesses to indirect memory. The proposed model can
estimate local memory misses using the extension of
Counter Stack [22] (§3). With the new SLA support
manager on a disaggregated memory system integrated
to Linux KVM, this paper shows its feasibility by real
machine experiments (§4).

2. SLA for Disaggregated Memory
To support the bounded performance with disaggregated
memory on clouds, SLA must be changed to include
the effect of memory allocation of direct and indirect
memory. Even with memory heterogeneity, the system
must provide a certain level of performance consistency.

We define SLA-α as an agreement supporting the
performance degradation within (1− α) fraction of per-
formance of a virtual machine (VM) with the contracted
resources. For instance, when a customer contracts to
use 128 GB of DRAM memory with SLA-0.9, the cloud
provider can use any combination of direct and indirect
memory capacities, as long as it can provide the perfor-
mance within a performance degradation of up to 10%
from the direct memory-only performance. If the cloud
system is unable to allocate the required capacity of di-
rect memory to meet SLA-α, the VM must be migrated
to a physical node that has sufficient memory capacity.
To support such a new SLA, a performance prediction
model is required to identify the performance degrada-
tion due to the involvement of indirect memory.

2.1 Performance Prediction Model
The execution time is delayed by the total latency of
indirect memory accesses (direct memory misses), and
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thus, we define the execution time as follows:
T (n) = L+ ΣP, (1)

where T (n) is the execution time of an application run-
ning on a VM on the disaggregated memory system.L is
its execution time on an ideal VM using only the direct
memory for the entire VM memory. P is a latency for
handling a direct memory miss. The latency penalty ΣP
determines the total performance penalty of applications
running on the disaggregated memory.

Let α be the target performance bound for SLA (0 <
α ≤ 1). For a given α, the allowed number of direct
memory misses, nSLA, is defined as follows:

nSLA =
(1/α− 1)L

Pavg
(∵ ΣP = Pavg × n), (2)

where Pavg is the average value for the entire P s, and n
is the number of direct memory misses. To meet SLA, n
must become equal to or less than nSLA. Otherwise, the
SLA is violated. In such a situation of SLA violation, the
direct memory must be additionally allocated to the VM,
and the minimum required capacity of direct memory
(∆c) is calculated as follows:

∆c = H−1(n→ nSLA),

where H−1 is the inverse function of a reuse distance
histogram which estimates the reduced number of direct
memory misses for the direct memory capacity.
SLA fulfillment With the known values of variables,
T (n) and ΣP , the ideal execution time L can be esti-
mated from equation 1 without knowledge of the work-
load. When n is larger than nSLA from equation 2 with
the estimated L, the additional required direct mem-
ory capacity (∆c) must be calculated to identify how
much more direct memory is necessary for fulfilling the
SLA-α. The key prediction model to obtain ∆c is H−1

which is based on the profiling of reuse distance. How-
ever, a naı̈ve reuse distance profiling incurs a significant
amount of cost since it requires an analysis of full mem-
ory traces. In the next section, an efficient reuse distance
profiling for the disaggregated memory is presented.

3. Reuse Distance Profiling
A reuse distance is the number of distinct memory pages
accessed between two memory accesses to the same
memory page. If the direct memory capacity is larger
than the reuse distance, the latter memory access be-
tween the two accesses will be a hit on the direct mem-
ory. Therefore, by using the reuse distance histogram of
a memory trace, we can estimate the number of direct
memory misses with a given capacity for the trace.

To profile the reuse distances online, there are two
challenges. First, tracing all accesses to memory be-
comes a significant burden on the system. To reduce
the overhead while focusing on the SLA, we propose
to use partial memory traces, which do not record
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Figure 1: Additional direct memory hits with increas-
ing direct memory sizes. Two curves are estimated
with page reuse histograms with reference-only and
reference+eviction traces. Dots denote the mea-
sured ones with a given size (measured).
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Figure 2: Partial memory profiling and reuse histogram

accesses to the pages in the hot memory region (§3.1).
Second, analyzing the profiled accesses should have ac-
ceptable overheads in terms of time and space costs.
Among possible approaches on memory access profil-
ing [9], this paper proposes Dual Counter Stack by
extending the prior Counter Stack technique [22] (§3.2).

3.1 Partial Memory Traces
Since tracking every access to memory is not feasi-
ble, sampling techniques have been proposed for the
reuse distance profiling. StatCache [3] samples ev-
ery N-th access, and RapidMRC [20] samples a small
portion of time period. However, such temporal sam-
pling is not appropriate for DRAM and remote memory
profiling since it requires profiling of very long reuse
distances. SHARDS [21] proposed a spatial sampling
mechanism for I/O accesses. However, it requires all ac-
cesses trapped to determine whether each access needs
to be sampled, which incurs significant overheads when
applied to memory tracing.

For reducing memory tracking cost, we adopt par-
tial memory traces introduced by Geiger [9], and we
also revise a reuse distance as the number of pages
evicted to and remained in remote memory between
eviction and subsequent reference to the same page.
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Figure 3: HyperLogLog counters example

Figure 1 shows the increased direct memory hit counts
when additional direct memory capacity is added. Two
curves are estimated from the reuse histograms with
reference-only and reference+eviction. Dots
show the increased hits from the real runs with the given
additional memory capacity. The results show that the
estimation corrected with eviction traces is more accu-
rate than the estimation with only references.

Figure 2 presents the overview of monitoring system
with partial memory profiling. We manage the memory
pages in three regions. First, active memory consists
of hot data, and any referenced page is moved to the re-
gion ( 1 and 3 ). Second, inactive memory contains
warm data, evicted pages from the active memory ( 2 ).
Third, remote memory covers the pages evicted from
inactive memory ( 4 ) and located in remote memory.
Except for active memory, we capture the memory ac-
cesses by unmapping, and collect reference and eviction
traces in the page fault handler. Profiling between the
direct and remote memory, obtained from 3 and 4 ,
is used to estimate whether the current performance is
within the SLA on the disaggregated memory. In addi-
tion, the reuse histogram between the active and inactive
memory, obtained from 1 and 2 , can be used to iden-
tify how much direct memory is over-provisioned after
satisfying the SLA.

3.2 Counter Stack for Partial Memory Traces
Counter Stack is an efficient reuse distance estimation
technique using full access traces [22]. In this section,
we briefly describe Counter Stack and our extension for
supporting partial memory traces.
Counter Stack with Full Memory Traces: For every
access, Counter Stack creates a counter using Hyper-
LogLog which estimates the number of distinct items
based on the stochastic averaging of hashed values of
accesses. The consecutive accesses are added to all Hy-
perLogLog counters, to estimate the number of distinct
accesses since each counter has been created.

Figure 3 presents an example of Counter Stack. If a
reuse exists in a given memory access, the counter does
not increase horizontally. For the non-increasing coun-
ters, vertically non-increasing counters in a column indi-
cate reuses and their distances marked in the bold num-
bers in the figure. Then, Counter Stack detects reuse, and
the counter value indicates the estimated reuse distance.

Table 1: Workloads: performance and memory footprint

Workload local DRAM-only Perf. Memory Footprint

movielens 1,170.485s 25,607MB
twitter 287.086s 16,637MB
snap 375.217s 69,525MB
TPC-C 42796.1TPS 26,556MB

Since the number of counters determines the compu-
tation and memory overheads, Counter Stack adopts two
optimizations. First, it creates a counter for a group of
accesses instead of every access. This reduces the res-
olution of reuse distances, but the number of counters
are also reduced as the size of the group increases. Sec-
ond, it drops old counters. This restricts the distance of
detectable reuse, while Counter Stack can focus on the
reasonable range of reuse distances.
Dual Counter Stack for Partial Memory Traces: To
support partial memory traces with reference and
eviction traces, we present Dual Counter Stack by
extending Counter Stack. It creates two counters for
every remote memory accesses: CounterR&E takes both
references and evictions. The counter is used to detect
reuses, because a new reference to the recently evicted
address does not increase this counter. CounterRO takes
references only. Since the reuse distance is the number
of evicted but not referenced pages, as described in §3.1,
it can be estimated by (CounterR&E - CounterRO)

However, when a reference and eviction on a page
are counted, the order of accesses matters. Assume that
a page is referenced and then evicted between a reuse.
This contributes to the reuse distance by its definition.
On the other hand, if the page is evicted and then refer-
enced, it does not contribute to the reuse distance since
it is finally referenced. However, the counting based
mechanism cannot distinguish two cases. To address this
problem, we add a reference id for each page, increasing
the id for every eviction. This makes the reuse distance
estimation correct by distinguishing the cases.

4. Evaluation
4.1 Implementation
We implement the proposed SLA support manager on
a KVM-based disaggregated memory system, dcm [12].
The implementation is based on Linux kernel 4.10.12.
We use the LRU-chain management of dcm to man-
age three memory regions, and dcm traps accesses on
inactive and remote memory regions. The memory
profiling with HyperLogLog is executed during the page
fault handler, and estimating the reuse distance his-
togram is periodically executed every 5 seconds as a
user process. The SLA manager also notifies the kernel
to expand or shrink the direct memory capacity for each
VM based on the estimation results.
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Figure 4: Performance/direct memory consumption nor-
malized to local DRAM-only VM
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Figure 5: Direct memory consumption over time

4.2 Experimental Methodology
For evaluation, we use a system with two Intel Xeon E5-
2670v3@2.3GHz, DDR4 96 GB memory. For a remote
memory, we equip a PCRAM-based Intel Optane SSD
with 375GB capacity. A VM is configured to have 24
vCPUs and 160 GB memory. The baseline experiments
use a vanilla KVM configured to allow memory over-
commits. For evaluating the SLA manager, the proper
local DRAM capacity is determined by the SLA man-
ager, and then the capacity is adjusted in dcm [12].

Table 1 lists the workloads and their characteris-
tics. For the performance metric, we use throughput per
second (TPS) for TPC-C and execution time for the
rest. The memory footprint is measured using Resident
Set Size (RSS). We chose four workloads widely used
in the in-memory computing on clouds: collaborative-
filtering (movielens), graph processing (twitter), in-
memory database (TPC-C on VoltDB), and gene se-
quence alignment (snap) [6, 19, 23].

4.3 Experimental Results
The primary goal of the proposed SLA manager is to
fulfill SLA-α and the secondary goal is to reduce the
capacity of the direct memory as much as possible,
while SLA-α is retained.

Figure 4(a) shows the performance results of our
SLA manager. The x-axis indicates target workloads and
the y-axis represents the normalized performance to the
ideal VM, which can contain the entire memory foot-
print in the local DRAM (local DRAM-only VM). All
results show that they achieve the target performance.
Figure 4(b) shows the direct memory consumption nor-
malized to the local DRAM-only VM. Under SLA-0.9,
movielens shows up to 99.6% performance of the local

DRAM-only VM with 47.8% of the direct memory ca-
pacity.

Figure 5 presents the direct memory consumption
during the execution for two workloads. In Figure 5(a),
allocation and reclamation of the direct memory are re-
peated to accommodate the memory demand changes of
movielens. Figure 5(b) shows that a much smaller direct
memory capacity is enough to meet the SLA for TPC-
C. Infrequently, the memory consumption with SLA-0.6
is larger than that with SLA-0.9since our SLA manager
aggressively enlarges and conservatively shrinks the di-
rect memory capacity. However, the overall consump-
tion with SLA-0.6 is much smaller than that with SLA-
0.9.

Finally, our SLA manager shows negligible time
and space costs. The HyperLogLog-based profiling adds
78ns latency to the page fault handler on average. Note
that the latency is added infrequently, with only accesses
to tail parts of direct memory and indirect memory. In
addition, Dual Counter Stack takes 4.7ms for every
5s time interval. Its CPU utilization is about 0.004%
running as a background process. The memory footprint
by the SLA manager is 5.2-5.8MB for the workloads.

5. Conclusion and Future Work
This paper defined a new SLA for disaggregated mem-
ory systems and proposed an SLA support manager for a
single system. We are exploring the following directions
as our future work.
Multi-tiered memory: Our framework needs to be ex-
tended to support multi-tiered memory systems. A sys-
tem can have both of the network-attached remote mem-
ory and PCIe-attached non-volatile memory (NVM).
Moreover, network latencies and bandwidth can vary by
the network topology, creating diverse remote memory
access costs.
Compensation for temporary SLA violation: Al-
though the proposed technique can support the overall
performance guarantee, temporary SLA violation can
occur for a short period of time by sudden VM behav-
ior changes. The violation can be quickly compensated
at the next time period, by over-provisioning memory
capacity temporally.
Sequential access: Disaggregated memory system needs
to be further optimized for sequential access patterns
which incur remote memory accesses for consecu-
tive addresses. Prefetching or Elastic Block Manage-
ment [12] can be employed to address such patterns.
Memory Scheduling Policy: With the proposed per-
formance model and dynamic memory allocator, mem-
ory becomes a predictable and flexible resource. Thus,
memory capacity becomes a schedulable resource, and
various scheduling policies are possible, such as limit-
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ing the performance variance, maximizing system-wide
throughput, and so on [10].
Revisiting VM placement: A VM placement policy
should be revisited as our work provides more schedul-
ing options. As a VM does not have to fully allocate its
memory within the system, more VMs can be consoli-
dated into a system without SLA violation.
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